Title: Vehicle Speed and Acceleration Control in a Vanet
Simulation (Four Legs Intersection Case Study)

Author: Albina TOCILLA, Tamara LUARASI

Source: Forum A+P 29 | Planning in the Polycrisies era
ISSN: 2227-7994

DOI: 10.37199/F40002907

Publisher: POLIS University Press

78

SCIENTIFIC RESEARCH PAPERS

Vehicle Speed and Acceleration Control in a Vanet Simulation
(Four Legs Intersection Case Study)

Albina TOCILLA

POLIS University
Tamara LUARASI
POLIS University

Abstract

Vehicular Ad-Hoc Networks (VANETS) are a specialized form of ad-hoc networks that enable communication between
automobiles and also between vehicles and roadside infrastructure. The speed parameter is significant in multiple aspects
of VANET design and applications and it denotes the rate at which vehicles move inside the network. The goal of this paper
is to achieve different levels of the speed and study their influence on different parameters of vehicles’ network especially in
beacon message transmissions. Another aspect is how the speed and the load channel are related to other. In other words, the
main aim consists on adapting the traffic simulation to the reality as close as possible, specifically to find how can we adapt
the simulation speed to real vehicle speed. An important element in this effort was the control on the speed and acceleration
of the vehicles. Besides this, we highlighted the influence of the speed on the communication between vehicles in a VANET
simulation, considering specifically the BSM messages and beacon interval. According to the result of these simulations,
there is a relation between the speed and the network features, and a relation between the combination of speed and channel
load to network properties. The goal of the simulations after all, was to envision how this network would be implemented in
real situations. These vehicle networks have a promising future

Keywords
Speed control, OMNET++, SUMO, TraCi, Traffic simulation, Veins

FORUM A+P | 29 |OCTOBER 2024

INTRODUCTION

In recent years, the advancements in wireless communications
have created new areas of research in computer networking.
These areas focus on expanding the connectivity of data
networks to settings where wired solutions are not feasible.
Of all these factors, vehicular traffic is receiving increasing
attention from both academia and industry. This is due to the
significant number and relevance of the applications associated
with it, which range from ensuring road safety to managing
traffic and even providing mobile entertainment. The speed
parameter is an essential one while creating communication
protocols, routing algorithms and applications in VANETSs to
ensure reliable and timely communication among the vehicles.

The vehicle speed and acceleration control are managed
from two sides: from SUMO (Simulation of Urban Mobility)
side and OMNET++ & Veins side.

OMNET++ is an extensible , modular, component-based
C++ simulation library and framework, which make possible
the building of network simulators. These networks, called
VANET, are networks between vehicles and units on the
street and between vehicles themselves. These networks
make possible the communication among vehicles and among
vehicles and outside infrastructure, providing in this way a big
help to drivers to regulate the traffic and avoid accidents.

Veins is a framework that joins the OMNET++ network
simulator and SUMO. It provides an interface between these
two components which allows us to customize different
elements of the simulated traffic and the communication.

The vehicle speed and acceleration control are managed from
two sides: From the SUMO side and OMNET++& Veins side.
In Sumo there are a wide range of influences on vehicle speed.
Each of these influences sets an upper bound on the vehicle
speed (dIr.de, n.d). Urquiza-Aguiar et al., (2019) analyzed
different alternatives that we can use in SUMO to generate a
traffic. First, the model chosen in Sumo has its own influence
and interpretation of different parameters used in different
commands. By default, within SUMO, the microscopic model
developed by Stefan Kraufl (Lopez et al., 2018) is used and
defines the car speed in relation to the vehicle ahead.

The research question of this paper is how does the speed
influence on other VANET parameters, specifically channel
load, BSM messages and beacon interval. The main aim
consists on achieving different levels of speed and evaluate this
relation.

NE
g

Figure 1. The different simulation granularities; from left to right:
macroscopic, microscopic, sub-microscopic (within the circle: mesoscopic)
(dIr.de, nd)

LITERATURE REVIEW

There are a lot of papers and materials whose subject is the
simulation of the vehicle traffic, and a variation of analysis
related to this traffic. Regarding the main purpose of this paper,
the studies about the relation among BSM, the beacon interval,
the channel load and their influence on speed, are considered.

Bouk et al., (2015) proposed an examination of the latest
hybrid adaptive beaconing techniques suggested for VANETs.
Their paper provided a detailed discussion on the parameters
that these systems optimize, which include beacon power,
rate, and/or CW. It also explained the operating principles
of these schemes. Ultimately, the assessment and simulation
parameters are comprehensively presented to facilitate a
clear understanding of the differences among all the schemes
discussed in the literature. Furthermore, they offered a
compilation of current obstacles and potential areas for further
exploration. Their intention was to inspire deeper investigation
into the limitations of beaconing in VANETs.

Furthermore, Sathyapriya et al (2020) studied the regulation
of vehicles’ speed base on the speed limit of a certain area.
A single transmission of data from a central control site is
sufficient to initiate vehicle-to-vehicle communication. A
vehicle initially receiving the signal transmits it to the adjacent
vehicles, creating a continuous chain of transmission. VANET
mitigates the drawback of signal loss caused by the velocity
of vehicles. This technique has the capability to effortlessly
regulate the speed of the vehicle in an automated manner.
Vehicle-to-vehicle (V2V) transmission is more efficient
compared to previous technologies such as GPS transceiver
systems, which require transceivers to be installed at regular
intervals along the route. This signal may experience signal
degradation if the vehicle is traveling at a high velocity. VANET
effectively mitigates these limitations.

Amour & Jaekel, (2023) proposed a decentralized congestion
control algorithm where each factor adjusts the data rate
(bitrate) used to transmit its wireless packet congestion based
on the current load on the channel.

In Tomar et al (2022) one aspect of the work analyses the
impact of beaconing in the network.

Considering these researches and many other ones related
to VANET simulation, this paper aims to contribute to the
studies related to the interplay of speed, channel load and other
VANET parameters.

METHODS
This work is a study about how to control the vehicle speed and
acceleration of traffic and about the relations between the speed
and some VANET parameters, specifically channel load, BSM
messages, and other network parameters.
The methodology was based on traffic simulation and the
establishment of a network among the vehicles involved in
this traffic, specifically VANET. Many experiments are done,
changing different parameters, until some conclusions were
presented.

Software SUMO is used to generate the vehicle traffic. Two

Scientific Research Papers

files are needed as inputs by SUMO to generate the traffic: one
that represents the road network of the zone that we study, and
a file that describes the vehicles, their characteristics, and the
routes they take.

The real information that we have is the number of cars
during 24 hours per one week, collected by cameras in some
intersections of Tirana.

Then the first input, that is, the road network, is imported
from the map around one of these intersections — specifically,
the Don Bosco intersection, by OpenStreetMap. Then, this file
is converted into a format accepted by SUMO and is called file.
net.xml.

For the second input - the file that describe vehicles, their
characteristics, and the routes that they take, there are different
approaches in SUMO software to generate the vehicle traffic
depending on traffic demand generation tools (Luis F. Urquiza-
Aguiar, Pablo Barbecho Bautista, William Coloma Goémez,
Xavier Calderon, Comparison of Traffic Demand Generation
Tools in SUMO, Case Study).

We argue that the combination of duarouter (one of traffic
demand generation tools) and randomTrips.py command is the
best way to judge and analyze the real vehicular traffic. This
choice is dictated by the limited information that we have.

As a result we get the file named file.rou.xml.

Providing two files file.net.xml (road network generated
from maps imported from OpenStreetMap) and file.rou.xml
(generated routes), as well as a configuration named file.
sumocfg, the vehicular traffic is generated independently by
SUMO.

The traffic generated by SUMO is integrated into OMNET++.
On OMNET++ side, we use programming to test the vehicle
network features, especially the BSM messages in different
situations of the speeds, by using different speed modes. We
also combine the speed mode parameter with different channel
load in message transmission.

Therefore, the set of software SUMO&OMNET++& Veins
were used in this study. The simulated traffic by SUMO was
integrated into OMNET++, where a VANET network was
simulated. It is Veins that provides the join of SUMO and
OMNET++.

The work done
As we mentioned before the first phase of the work is the
generation of the vehicle traffic and SUMO software was
chosen to do it. There are some preparatory steps to prepare
the information that SUMO will use to generate the traffic.
Each of these steps has some input and output that are used by
the following one. The following alternative of a sequence of
commands was applied:

The command openmapstreet creates the file file.osm
generated from maps

The command netconvert creates the file file.net.xml — routes
network

The command randomTrips.py creates the file file.trips.xml

—contains a set of random trips for the network

80 FORUM A+P | 29 |OCTOBER 2024

The command duarouter generates the file file.rou.xml

— contains vehicle, their characteristic and the routes that they
take

There is the command randomTrips.py where we have some
parameters that influence the vehicle speed: maxSpeed, tau,
minGap. Considering the default values of these parameters the
command has the view:

.../randomTrips.py --vehicle-class passenger -n "file.
net.xml" -b 0 -e 3600 -p 2.6 --route-file "file.trips.xml"--
trip-attributes="length=\"5\" accel=\"2.6\" decel=\"4.5\"
sigma=\"0.5\"

tau=\"1\" minGap=\"2.5\"
emergencyDecel=\"9\"

maxSpeed=\"55.55\"

carFollowModel=\"Krauss\"" —validate

Some of the parameters can be interpreted differently in
different models. Considering the default model, which is
represented by carFollowModel=\"Krauss\"", the following
parameters are almost all the parameters of this model and their
meaning is:

vehicle-class defines the type of vehicles, in this case we have
considered passenger vehicles

-n is used to specify the network in this case file.net.xml
-e specifies the end time which is set to 3600 sec
-p represents the arrival rate. The arrival rate is calculated

by the formula: (t2-t1)/ n

o specifies where resulting trips are stored

To define the parameter -p we have used the information
taken during a week, 24 hours per day, but we have considered
the time interval 7:00-to 20:00, when the number of cars has
no big differences, as it is shown in the following chart. The
calculation of the formula (t2-t1)/ n gives us the value 2.6.

-trip-attributes: by the Specification - SUMO Documentation,

e Average of cars

1500

1 23 5B . 9 1133 01517 019 21 23

Figure 2. The average of vehicles’ number in 24 hour, we have considered
the time interval 7:00-to 20:00, when the number of cars has no big
differences,

Trips-attributes Meaning
| carFollowMode] The model selected, in this case the default model
tau 1 The net space between leader back and follower front
Accel The acceleration ability of vehicles of this type (in m/s"2)
Degel The deceleration ability of vehicles of this type (in
m/s"?)
Sigma The driver imperfection (0 denotes perfect driving)
maxSpeed The vehicle's (technical) maximum velocity (in m/s)
| minGap Empty space after leader [m]
smergencvDecel | If for some reasons, reaching the safe velocity requires
braking beyond the desired deceleration, the vehicle may
do so up to a hart limit configured by this attribute

n.d. the meaning of the trip attributes are presented in the
following table

the --trip-attributes parameter generates the following
information in resulting file of the command roundTrips.py,
which is file.trips.xml.

<vType id="passenger" length="5.00"
minGap="2.50" maxSpeed="55.55" vClass="passenger"
carFollowModel="Krauss" accel="2.6" decel="4.5"

emergencyDecel="9" sigma="0.5" tau="1"/>
After that, the command duarouter is used,
duarouter file.net.xml --route-files file.trips.xml -o
file.rou.xml,
where the file file.rou.xm is generated, and we can simulate a
traffic in SUMO with the command:
sumo-gui file.sumocfg,
where file.sumocfg is the configuration file:
<configuration>
<input>
<net-file value="file.net.xml" />
<route-files value="file.rou.xml" />
</input>

<output>

<tripinfo-output

value="/. . ./tripinfos.xml"/>
<tripinfo-output.write-unfinished value="true"/>
</output>

</configuration>
If we use the OUTPUT tag in the configuration file, we can
get an output file, in this case, tripinfos.xml with information,
which gives us the following results:
All these parameters, which are trip-attributes, influence the
vehicle speed and acceleration, as we can see it in the maximum

Defaut | Speed Average | Speed Max | Waiting Time | Time Loss

parameters | 18 4km/hour |42 3km/'hour 219 288

Table 1. Some statistics generated by SUMO

speed, because of the parameter maxSpeed=\"55.55\".
We can improve the vehicle behavior using the attribute
“speedFactor,” which makes the vehicles drive with that factor
of the current speed limit. Dhe default value of this parameter
is 1.
Having a distribution of speed factors (and hence of
desired speeds) is beneficial to the realism of a simulation
(Specification - SUMO Documentation, n.d.). The truncated
normal distribution' is chosen for this parameter, which can be
represented by:

speedFactor="normc (mean, deviation,
lowerCutOff, upperCutOff)"
and if we use it in the

shorter ~ way,

speedFactor="normc(mean,deviation)", the two last parameters

have the values [0.2, 2]
Adding this parameter, the command randomtrips.py has now
the form:

.../randomTrips.py --vehicle-class passenger -n "file.
netxml" -b 0 -e 3600 -p 2.6 --route-file "file.trips.xml"
--trip-attributes="length=\"5\"" accel=\"2.6\" decel=\"4.5\"

sigma=\"0.5\"
tau=\"1\"minGap=\"2.5\"maxSpeed=\"55.55\"
speedFactor="norme(1.2,0.3)"
carFollowModel=\"Krauss\"" —validate

emergencyDecel=\"9\"

The values 1.2 and 0.3 imply a speed between 80% and 120%
of the legal speed limit.

The following table shows an important improvement related to
speed and other traffic indicators.

Integration of SUMO simulation in OMNET++

Using Speed Average | Speed Max | Waiting Time | Time Loss
seeedBactor | 31 Skm/ore | 76.9kmiore | 0.19 0.86
distribution

Table 2. Some statistics generated by SUMO considering speedFactor
parameter

The vehicle traffic generated by SUMO can be integrated and
controlled from OMNET++ side.
TraCI ("Traffic Control Interface") is an interface between
SUMO and OMNET++, where SUMO plays the role of a server
and the client is on OMNET++ side.
Some steps, then, are necessary on the client side.
As afirst step, we create a project in OMNET++, and we include
the Veins project on it, which is an open-source framework and
provides a C++ client library for the TraCI AP
OMNET++, as an object-oriented modular discrete event
network simulation framework, provides infrastructure and
tools for the VANET project, and this one, using the OMNET++
modules and its own C++ library, makes possible the use of
the running traffic by TraCi on the client side, that is, from
OMNET++ side.
Some files need to be added in the project created.
File file.NED: as we have already mentioned, the role of
OMNET++ is the creation of a VANET network between road
side units and vehicles and between vehicles themselves. For
this purpose, a topology description language is used in a file
called file.NED, with a minimum content as follows:
network networkName extends Scenario{

submodules:
rsu[l]: RSU {

@display("p=150,140;i=veins/sign/yellowdiamond;is=vs");

}

}

where a road unit side is added to the content of inherited .ned
file, Scenario (part of the veins project).
Files file.net.xml, file.rou.xml, file.sumocfg, used in SUMO,

82

have to also be included in the project.
File file.launchd.xml, with the following content is also created
in project
<?xml version="1.0"?>
<!-- debug config -->
<launch>
<copy file="file.net.xml" />
<copy file="file.rou.xml" />
<copy file="file.sumo.cfg" type="config" />
</launch>

and the name of it is represented in the configuration file
OMNETpp.ini.
File OMNETpp.ini: to run the simulation, we need to create an
OMNETpp.ini file. The file tells the simulation program which
network to simulate and allows you to assign values to different
parameters declared in the .ned files (your file or the inherited
ones), and it explicitly specifies seeds for the random number
generators (Team, n.d.). The initial content of this file can be
copied from the file with the same name in the folder . . ./home/
veins/src/modules/application/traci and modified. Many other
parameters are included here, which can be grouped by some
categories, and some of them are:
[General]
Simulation parameters
Obstacle parameter (some updates here)
TraCIScenarioManager parameters
RSU Settings
11p specific parameters (some updates here)
App Layer (some updates here)
Mobility
Files VehicleControlApp.h, VehicleControlApp.cc. These two
files will replace the respective default files TraCIDemollp,
which are used by default in OMNETpp.ini. To take into
consideration our code in simulation, we add the following
lines on file.ned file with the following content,
simple VehicleControlApp extends DemoBaseApplLayer
{
parameters:
@class(veins:: VehicleControlApp);
double allowedSpeed=default(55.55);
string appName = default("My first Veins App!");
b
Some customizations are done in OMNETpp.ini file like:
[General]

network = networkName

#Obstacle parameter(some updates here)
#* obstacles.obstacles = xmldoc("config.xml",
"//AnalogueModel[@type='SimpleObstacleShadowing']/
obstacles") (commented)

#11p specific parameters (some updates here)
* *% nic.macl1609_4.useServiceChannel = true

#App Layer (some updates here)
* node[*].applType = "VehicleControlApp "

FORUM A+P | 29 |OCTOBER 2024

* node[*].appl.sendBeacons = true
* node[*].appl.dataOnSch = true

* node[*].appl.beaconlnterval = 1s
TraCIDemollp is an extension of the module
DemoBaseApplLayer and this one
BaseApplLayer.

Some modifications are done in the module VehicleControl App.

inherits the class

There are some event based methods that can be customized as:

void initialize(int stage)

void handleSelfMsg(cMessage* msg)

void onWSM(BaseFramel609 4* wsm){};

void onBSM(DemoSafetyMessage* bsm){};

void onWSA(DemoServiceAdvertisment* wsa){};

void handlePositionUpdate(Object* obj);
These methods are event methods, and they will run based on
the events that happen in one moment. As we see, some of these
methods accept as information messages of different types,
and based on the information that they receive, they react in a
specific way.
There are different types of messages that can be sent or received,
and some are managed by OMNET++ classes, like cMessage,
and others by Veins classes like DemoSafetyMessage,
DemoServiceAdvertisment.
In this work we are interested on the basic safety messages (type
DemoSafetyMessage), or beacon messages, because these are
periodic messages, and they broadcast regular information like
the position speed, status of vehicle, address, location, speed
direction, etc., but we could allow other messages too. Other
messages can be:
DemoServiceAdvertisment— is the type of wave service
announcement (WSA) messages,
DemoServiceAdvertisment— is the type of wave service
announcement (WSA) messages, and
BaseFramel609 4—is the type of wave service message
(WSM).
Event-driven messages are sent whenever certain events, such
as traffic accidents or road hazards, are detected, while BSMs
are sent at regular intervals by each vehicle in the network,
regardless of the road conditions. This means that, as the vehicle
density increases, the total number of BSMs being transmitted
within the network increases proportionally (Bouk et al., 2015).
Because the beacon messages are the most frequently sent
messages from one vehicle to the others and to the vehicle
itself, and the function that is activated associating this event is
on BMS (DemoSafetyMessage msg), we can write here some
code that would cause changes on simulated traffic behavior.
The logic used in this function is the same as in Park (n.d), but
we have changed some parameters. This code forces to adapt
the vehicle speed to the real speed.
The pseudo code is:
onBSM: (DemoSafetyMessage msg)

get the sender speed from msg object;
get the position of preceding vehicle from msg object

set SpeedMode to traciVehicle object
define e desired distance between two vehicles
define e coefficient as beaconlnterval;
find the distance between preceding vehicle and the current
position
find the acceleration = (distance — desired distance)/
coefficient™2
if (distance - desiredDistance> 1)
set SpeedMode to traciVehicle object
set acceleration to traciVehicle
apply slowDown function with parameter allowedMaxSpeed
(defined in .ned file)
Otherwise if (distance - desiredDistance< -1)
set SpeedMode to traciVehicle object
setEmergencyDecel(-acceleration *5)
apply slowDown function with parameter allowedMinSpeed []

Some explanation here:

. SpeedMode is a TRACI command. As we have
already mentioned, TRACL gives access to a running road
traffic simulation generated by SUMO and can interfere in it
due to a TCP based client/server architecture.

For simulation purposes, three types of parameters for speed
mode command are considered here. This command retrieves
the values set by TRACL commands speed (0x40) and
slowdown (0x14) and regulates the behavior of the car. By
default, the vehicle is restricted to driving at a speed lower than
what is considered safe according to the following car’s model.
Additionally, it must not overcome the limits on acceleration
and deceleration. In addition, the vehicles follow the right-
of-way regulations when approaching an intersection and,
if required, they brake hard to prevent crossing a red traffic
signal. To regulate this behavior, one can utilize the speed mode
command. The parameter is a bitset, where bit 0 represents the
least significant bit. It contains the following fields (A., 2018):

bit0: Regard safe speed

bitl: Regard maximum acceleration

bit2: Regard maximum deceleration

bit3: Regard right of way at intersections

bit4: Brake hard to avoid passing a red light

Three different parameter values are used for the SpeedMode
in our experiments.

The first is parameter value Ox1f or bitset 11111, for the speed
mode, which means that all the bits with respective meaning are
considered : bitO(Regard safe speed), bitl(Regard maximum
bit3(
Regard right of way at intersections), bit4(Brake hard to avoid

acceleration), bit2(Regard maximum deceleration),

passing a red light)

The second is the parameter value 0x07 for the speed Mode,
which means that bit set 0011lis considered. And the third
parameter value is 0x06 or the bit set 000110.

To calculate the acceleration, we have used the formula.
Acceleration= (distance — desired distance)/ coefficient2
where coefficient = beaconInterval
SUMO runs externally as a dedicated service and is not "built

in" while compiling.

We have to launch sumo in parallel, so that it can wait for
incoming connections on the port specified in the behavior of
our application (generally 9999). Therefore, we need to start the
TraCl server first by the command:

python /home/veins/src/veins/sump-launch.py -vv -¢ sumo-gui

Results
The tests are done with the following simulation parameters:
Beacon interval 1s
Fixed transmission power 20 mW
BSM size 256
Minimum power level =110 dBm
Noise floor 98 dBm
Vehicle number 60
The results represented in the file.vec, which is the output in
OMNET++ in result folder, are presented in the table below:
The graphic below shows vehicle speed-modes influence to

Speed | Speed | Speed | Generated | Received | Received | Sent Total

Mode | Mean | SidDeay | BSM BSM Broadcast | Packets | Lost Packets

Ox1f (288 |79 3 51 143 8 64
0x07 [29.8 |4.02 6 30 126.6 7 69
0x06 | 1188 | 153 3 11 11 3 19

Table 3. Some statistics generated by OMNET++ using different speed
mode

Speed and Some Network Features

200

u Speed 150
GeneratedB5SM

Values

W ReceivedBSM

100

m ReveivedBroadcast 50 I I

SentPackets o (|| 4 . mm_

m TotalLostPackets Ox1f 0x07 Ox06
Speed mode

Figure 3. The influence of speed mode in other network parameters when
beacon interval is | sec.
different network indicators. The incrementing of the speed
is associated with the decrementing of the other network
properties.
We can see that the incrementation of the speed is caused
because in the 0x06 mode there are fewer limitations dictated
by different bit fields of speed mode, while, the Received BSM
and Received Broadcast are higher in the 0x1f speed mode.
Continuing the experiment with different channel load we have
the following results. The load of the channel, discussed on
Amour, B., & Jaekel, A. is considered:
Low channel load:

Beacon interval 0.1s

BSM size 256
Medium channel Load
Medium channel Load

Speed | Speed | Speed | Generated | Received | Received | Sent Total _
Statistics for speed mode Ox1f
Mode | Mean | StdDey | BSM BSM Broadeast | Packets | LostPackets.

0x1f [311 |39 35 484 1278 74 154 lostPackets [
0x07 313 (39 |13 458 1228 51 92 Padkets jm
0x06 | 1904 |18 |29 80 106 37 |55 e
BSM
Table 4. The statistics for low load channel
BSM um
Speed |
Speed | Speed | Speed | Generated | Recerved | Recerved | Sent Total
°3388%5883388385838323
Mode | Mean | StdDey | BSM BSM | Broadcast | Packets | Lost Packets T e .b‘iéhfl“m Ny NRIMe
O0x1f | 311 39 160 2446 3242 200 11
0s07 | 311 18 152 775 3061 192 124 Figure 4. The graph for 0x1f speed mode,
0x06 | 1904 | 53.8 36 59 398 483 158 Channel load | Generated | Recerved | Recetved | Sent Total
Table 5. The statistics for medium load channel 0x07 speed mode | BSM BSM | Broadcast | Packets | LostPackefs
Beacon interval 0.02s Low load 15 458 1228 51 92
BSM size 256 Medium Load 152 275 | 3061 | 192 124
High channel Load:
. Beacon interval 0.05s High load 62 912 1694 101 120
. BSM size 1024

The three tables in Fig. 4,5,6 show that the channel load does ~ Table 8. In 0x07 speed mode

Speed | Speed | Speed | Generated | Received | Received Sent Total

Statistics for speed mode Ox07
Mode | Mean | StdDev BSM BSM | Broadcast | Packets | LostPackets

0x1f | 31.1 39 64 969 1780 104 87 LostPackets [k
Packets jfiem
007 | 314 | 38 62 912 1694 101 120
Broadcast
0x06 | 190.4 | 555 58 162 187 66 81 BSM
BSM P
.. . Speed |
Table 6. The statistics for high load channel
= T = T e B = R = T o o o o o @ O o o o (=1
. R FE2EEE8EFTEEERFEEE AR
not have an influence on the speed average, but the standard L R R R
lowload mmediumlioad mhigh load

deviation for the speed is better in the low channel load with the
combination Bacon Interval = 0.1s and BSM size=256.

. . . Figure 5. The graph for 0x07 speed mode
Regarding the network communication, that is, the BSM

messages and Broadcast, the channel load is important. Channel load
If we compare the network data for dlﬁ“er.ent ch.annel mode for Vs sieslinadn| Crakt: | Rassves irsesves| e —_—
each of speed modes, we have the following evidences:
In the OxIf speed mode for the medium load channel we BSM | BSM | Broadcast | Packets | Lostlacksls
Low load 29 80 106 37 55
Channel load | Generated | Received | Received | Sent Total Medium Load 16 59 198 483 158
0x1f speed mode BsSM BSM Broadcast | Packets | LostPackets High load 58 162 187 66 21
Low load 35 484 1278 T4 154
Table 9. In 0X06 speed mode
Medium Load 160 2446 3242 200 111
: have the highest number of beacon messages, broadcasts and
High load 64 269 1780 104 87 packets. Also in 0x07 speed mode for the medium load channel,
we have the highest number of beacon messages, broadcasts
Table 7. Statistics for Ox1f speed mode and packets. In the 0x06 speed mode, the high load channel
provides the highest number of beacon messages, broadcasts.
Conclusion

84 FORUM A+P | 29 |OCTOBER 2024

Statistics for speed mode 0x06

LostPackets | —
Packets [
Broadcast [—
BSM
BSM
Speed
° &8 & & 8

500
600

lowload M mediumload M highload

Figure 6. The graph for 0x06 speed mode

Monitoring car traffic today is possible through various
technologies that enable the extraction of some important
statistics regarding real-time traffic condition and its problematic
points. However, the studies on traffic are necessary to make
predictions to prevent difficult traffic situations, to establish
control strategy regarding the direction of vehicles, and to find
suitable topology of key points of the road network. These
studies are practically possible only under traffic simulation
conditions.

This paper is presented in the form of tutorials theat use some
of the software such as SUMO, OMNET++, and Veins to carry
out a simulation. In addition to the simulating traffic by SUMO,
OMNET++ has established a network between vehicles, through
which communication between them is carried out. The data
comes as a result of traffic monitoring from the Municipality
of Tirana at a point in Tirana, Don Bosko, where monitoring
through cameras is accomplished

In our paper the goal is to achieve different levels of the
speed, and how it influences different parameters of the vehicle
network, especially in beacon message transmissions. Another
aspect is how the speed mode is related to the load channel.

The tables and charts represent different levels of the speed,
depending on command parameters used and the load channel
and BSM messages related to different levels of the speed mode.

REFERENCES

Luis F. Urquiza-Aguiar, Pablo Barbecho Bautista, William
Coloma Goémez, Xavier Calderdn

Comparison of Traffic Demand Generation Tools in SUMO,
Case Study: Access Highways to Quito

PE-WASUN’19, November 25-29, 2019, Miami Beach, FL,
USA

Dep. of Network Engineering. Universitat Politécnica de
Catalunya (UPC) Barcelona, Spain pablo.barbecho@upc.
edu Xavier Calderon Dept. Electronica, Telecomunicaciones
y Redes de Informacion, Escuela Politécnica Nacional Quito,
Ecuador xavier.calderon@epn.edu.ec

Bouk, S. H., Kim, G., Ahmed, S. H., & Kim, D. (2015, May
1). Hybrid Adaptive Beaconing in Vehicular Ad Hoc Networks:
A Survey. International Journal of Distributed Sensor Networks,
11(5), 390360. https://doi.org/10.1155/2015/390360Team, O.
(n.d.).

Lopez, P. A., Wiessner, E., Behrisch, M., Bicker-Walz, L.,
Erdmann, J., Flotterod, Y. P., Hilbrich, R., Lucken, L., Rummel,

J., & Wagner, P. (2018, November). Microscopic Traffic
Simulation using SUMO. 2018 21st International Conference
on Intelligent Transportation Systems (ITSC). https://doi.
org/10.1109/itsc.2018.8569938

Sathyapriya, A., Sathiya, K., Sneha, T. M., Rohit Raja, D., &
Manikandan, T. (2020, August 30). Automatic Speed Control
System in Vehicles Using VANET. Advances in Intelligent
Systems and Computing, 719—726. https://doi.org/10.1007/978-
981-15-5029-4 60

St. Amour, B., & Jackel, A. (2023, September 7). Data
Rate Selection Strategies for Periodic Transmission of Safety
Messages in VANET. Electronics, 12(18), 3790. https://doi.
org/10.3390/electronics 12183790

Sangyoung Park Module ‘Vehicle-2-X: Communication and
Control’

https://cse.iitkgp.ac.in/~soumya/micro/t2-4.pdf

Tomar Ravi, Sastry G. Hanumat, and Prateek Manish,
“Establishing Parameters for Comparative Analysis of V2V
Communication in VANET,” Journal of Scientific & Industrial
Research, vol. 79, no. 1, pp. 26-29, 2022

Urquiza-Aguiar, L. F., Coloma Gémez, W., Barbecho Bautista,
P., & Calderon, X. (2019, November 25). Comparison of Traffic
Demand Generation Tools in SUMO. Proceedings of the 16th
ACM International Symposium on Performance Evaluation of
Wireless Ad Hoc, Sensor, & Ubiquitous Networks. https://doi.
org/10.1145/3345860.3361521

A. (2018, October 5). TraCl SpeedMode. AVCOURT’s
Traffic Simulation Blog. https://avcourt.github.io/comp4560-
blog/2018/10/speed_mode.html

Definition of Vehicles, Vehicle Types, and Routes - SUMO
Documentation (dlr.de) https://sumo.dlr.de/docs/Definition_of
Vehicles%2C Vehicle Types%2C_and Routes.html

Vehicle Type Parameter Defaults - SUMO Documentation
(dlr.de)

https://sumo.dlr.de/docs/Vehicle Type Parameter Defaults.
html

Change Vehicle State - SUMO Documentation (dlr.de)
https://sumo.dlr.de/docs/TraCl/Change Vehicle State.html
VehicleSpeed - SUMO Documentation (dlr.de)
https://sumo.dlr.de/docs/Simulation/VehicleSpeed.html
Specification - SUMO Documentation (dlr.de). https://sumo.
dlr.de/docs/Specification/index.html

	Blank Page

