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Abstract

In some post-transition cities characterized by dense urban palimpsest, we ob-
serve that urban transformation advances through a patchwork of opportunistic 
interventions that often contrast approved, city-wide strategies. In Tirana, the 
cumulative effect of such decisions is a territory where large-scale masterplans 
coexist with fragmentary, site-specific developments, producing both visible dy-
namism and deep spatial incoherence.
This paper introduces a lightweight, data-driven methodology for prototyping 
Urban Suitability Scores (USS) as adaptable metrics which can inform and sup-
port decision-making. 
Using cadastral parcel data, a compact set of urban indicators (e.g., accessibil-
ity, regulatory capacity, amenity proximity), and by introducing a Lean Canvas 
Model as an interpretative reading bridge, we developed a generative workflow 
in Grasshopper (Rhinoceros 3D) that tests the possibility to translate qualitative 
stakeholders’ priorities into quantitative, weighted attributes. These are later 
clustered via a Gaussian Mixture Model (GMM) algorithm (LunchBox ML plugin) 
to evidence suitability classes’ fluctuation trend for targeted interventions. The 
clustering output renders them into spatially explicit, optimized, gradient-coded 
maps. 
This back-testing frames the tool not as a predictive engine, but as an exper-
imental diagnostic device for territorial reasoning. This research contributes a 
transferable framework for reading the fractured development trajectories of 
post-transitional urbanism, to reveal hidden dependencies or patterns that in-
form and support different urban scale related decision-making processes.

Keywords: 
Gaussian Mixture Model, Territorial Reasoning, Tirana, Unsupervised Learn-
ing, Urban Suitability Score, USS 
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INTRODUCTION
Post-transition cities, emerging from post-socialist or otherwise centrally reg-

ulated regimes, are frequently marked by discontinuous trajectories in which 
mega-projects puncture inherited plans through strategic political and economic 
alliances. Cases such as Belgrade’s Waterfront, Moscow’s MIBC, Gran Torre 
Santiago in Chile, Tbilisi hotels or Astana’s emblematic skyline reveal how 
high-impact architectural “punctures” become instruments of modernization 
while sidestepping normative planning strategies. This phenomenon is not ap-
proached here in a critical register, for we recognize the intricacy of governing 
such layered and fragile urban conditions; rather, it is understood as an oppor-
tunity to enrich the a priori analytical reasoning of territories. Within this frame, 
Tirana is chosen as the focal case, due to the intensity of operationalizing these 
fragmented interventions, through politically driven and superpositioned plan-
ning strategies which coexist alongside officially approved ones (Papadhopulli & 
Beqiri, 2024). We thereby introduce an early-stage prototype as workflow pipe-
lines which can reveal custom, user-specific analytical fluctuations in a territorial 
city-scale, by channeling data-driven dynamics into clustering maps of suitability. 
During the “Bread & Heart Festival”, held for the first time in Tirana in June 2025, 
a physical scaled model curated with traditional crafting techniques, showed all 
the emerging “Archi-punctures” of the reinvented new Tirana, which is step by 
step creating a new structural urban spine of the city. Therefore, it is important 
to analyze the impacts and risks of their geographical placement implications 

(Figure 1).
More than three decades after the full collapse of centralized planning, Tirana 

continues to evolve through a sequence of these fragmented and overlapping in-
terventions. Formal urban planning is nominally structured by the General Local 
Plan (PPV) and guided towards the TR030 vision, conceived by Stefano Boeri’s 
team and approved in 2017 - envisioning a polycentric “kaleidoscopic city” that 
balances urban growth with ecological restoration, social inclusion, and infrastruc-
tural renewal. The objective is to convert Tirana into a sustainable and accessi-
ble metropolitan network through the integration of peri-urban areas, enhanced 
transit, an orbital forest, and vertical densification (Stefano Boeri Architetti, n.d.).

This vision operates in parallel with the “booming” approvals of the Nation-
al Territorial Council (KKT/NTC); which is a collegial body led by the Prime 
Minister and empowered to grant permits of strategic interventions (National 
Territorial Planning Agency [AKPT], n.d.). In practice, the Council has repeat-
edly introduced high-density, parcel-by-parcel developments that diverge from 
municipal planning objectives or structural urban unit coordination, as part of 
a parallel strategy with national priority. In 2024 and 2025 alone, the NTC ap-
proved and published at least 27 archipunctures spread around the city, ranging 
from a minimum height of 20 to a maximum of 65 stories along major cor-
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ridors, including a proposed 100-storey skyscraper; thereby surpassing the 
scale/spread envisioned by TR030 (Figure 2). These bypassing decisions are a 
prime example of a recentralized, top-down spatial development logic that often 
contrasts the TR030 growth model. As a result, Tirana’s planning politics often 
devolve into the adjudication of these puncturing mega-projects, while territorial 
consequences such as strained mobility networks, amenity provision spread, 
and uneven regulatory application across neighborhoods, accumulate incre-
mentally; producing both visible chaoticism and persistent spatial incoherence. 

Figure 1. Mockup exhibited at “Bread & Heart” festival. Source: authors (2025).

Urban studies literature describes that Tirana’s history is marked by repeat-
ed “restarts,” shaped both by residents informally setting their own rules and 
by authorities struggling to reassert control (Dhamo, 2021). Although con-
temporary urban development benefits from more consolidated institutional 
structures and legislative frameworks compared to the time before we had 
a General Local Plan, the mode of city-making continues to reflect the frag-
mented urban fabric that emerged during the 1990s bottom-up urban sprawl; 
only now, on a larger scale, through top-down interventions. Urban growth in 
Tirana exemplifies what Smart and Koster (2024) describe as the entangle-
ment of formality and informality, where state-led planning, legislative improv-
isations, and retroactive legalizations coexist with irregular practices, produc-
ing a dual layer of urban governance in which formal regulatory frameworks 
are continually negotiated, adapted, and operationalized. Acknowledging this 
condition, we propose an explorative extension tool of urban analytics that 
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democratizes the ability to read the city in custom ways, by supporting de-
cision-making in different scales and fields, opening up new possibilities for 
participatory urbanism (Ma, 2025). A flexible parametric workflow is introduced 
to analyze the Tirana “archipuncturing” phenomenon, exploring possible op-
erational extensions of suitability zones, adaptable to the diverse needs of

citizens, public institutions and private stakeholders/investors. 
As Koolhaas (1995) has stated, future urbanism will no longer pursue con-

trol, permanence, or strict definitions. Rather, it will cultivate adaptable fields 
that enable processes to unfold without crystallizing into fixed forms. Instead 
of focusing on stable configurations, it must engage with the reconfiguration of 
infrastructures, the expansion of possibilities, and the acceptance of continuous 
modification and uneven development. Building upon this viewpoint, as well as 
similar approaches (Esri, n.d., 2025, WambuaLouis, 2024, Li, Zhou, Gu, Guo, 
& Deng, 2022), the paper proposes an explorative contextualization in reading 
urban fragmentation through cluster maps. These custom maps reveal a latent 
potential of territorial reasoning. We investigate this latency through the case 

Figure 2 - Bulevardi “Dëshmorët e Kombit”, central axis of the city, marshals the historical heritag-
es of the 20th century. TR030. Source: Stefano Boeri Architetti. Retrived 2025
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of archipunctures, which are large and programmatically intense architectural 
intervention, positioned as a strategic nodes across the city, capable of affecting 
wider urban performance. It operates as a lens for interpreting the methodologi-
cal results involved, which intend to identify strategic sites of intervention via ad-
aptable indicators. These interventions are envisioned as leverage points that 
have a future potential to reshape urban flows, redistribute accessibility, and sta-
bilize fragile morphologies. The primary obstacle is the identification of such po-
tential sites in the presence of incomplete information, contested priorities, and 
limited institutional capacity. To address this issue, the workflow tries to translate 
the aspirations of qualitative stakeholders into spatially legible and interpreta-
ble guidance. The approach is not deterministic, but open-ended. It prioritizes 
iterative, data-driven insights that facilitate targeted yet scalable forms of urban 
transformation, rather than striving for comprehensive control. Such data-driv-
en approaches echo broader debates on how big data and urban informatics 
can extend the analytical repertoire of urbanism by uncovering hidden patterns 
and enabling new forms of territorial reasoning (Offenhuber & Ratti, 2014).

Methodologically, the paper explores a compact, parametric clustering model 
designed to translate divergent priorities into intervention maps, while introducing 
a reinterpretation of spatial optimization modelling (Ligmann-Zielinska, 2013), 
generating suitability zones/surfaces. Indicators such as transit accessibility, 
amenity density, allowable FAR, parcel geometry, proximity to open spaces, etc. 
can be derived from cadastral and open datasets, normalized, and combined 
within a Grasshopper pipeline through stakeholder-defined weight vectors. A 
Gaussian Mixture Model (GMM) clustering routine then produces suitability 
classes, rendered as gradient maps across the urban fabric. This process raises 
an important research question: can such models capture qualitative differences 
in stakeholder agendas and render them spatially legible through mapping fluc-
tuation trends? By exposing the effects of shifting weight vectors, the tool allows 
the same territory to be “read” simultaneously through the perspectives of de-
velopers, municipalities, infrastructure agencies, or even students and citizens.

In this study, clustering was approached not as a fixed partition but 
as a probabilistic modeling of latent structures through Gaussian mix-
tures. To determine both the number and stability of groupings, opti-
mization was conducted over cluster count and initialization parame-
ters, prioritizing global likelihood and parsimony rather than point-level 
assignment. This procedure ensures that the resulting categorizations re-
main both statistically robust and interpretively coherent for urban analysis.

Methodology
Workflow Anatomy

This approach is intended and better serves to read the complexity of cities 
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which are characterized by dense urban palimpsest and governed by unconsol-
idated data regimes. As a consequence, the case study is anchored in Tirana. 
Urban Structural Units (USU) strike a balance between the unmanageable gran-
ularity of parcel-scale data (which stand at a threshold with big data operations) 
and the vagueness of administrative zones; offering a territorial “pixel” that con-
denses morphology, function, and relational position; while remaining accessi-
ble through NTPA (National Territorial Planning Agency/ AKPT) datasets. At the 
same time, they match the scale at which traffic patterns, amenity distribution, 
and morphological coherence can be meaningfully grasped, and at which mu-
nicipalities and market actors typically operate. The pipeline is implemented 
through a GIS-CAD bridge in which data are curated in QGIS, serialized to inter-
operable formats, and computed in Rhinoceros/Grasshopper with modular com-
ponents for normalization, weighting, and unsupervised clustering. The method 
is explicitly designed for extensibility: stakeholders can introduce new indica-
tors, revise formulae, alter decision thresholds or even connect an AI agent for 
continuous feedback, without disrupting the structure of the pipeline. (Figure 3)

Suitability surfaces found in existing models, are further specified as Urban 
Suitability Scores (USS), visualized as continuous spatial fields that synthe-
size heterogeneous criteria into a single scalar representation of how favora-
ble each location is for a stated objective at a certain time. Built through mul-
ti-criteria decision analysis, indicators are first standardized (e.g., min–max, 
z-scores), then weighted to reflect stakeholder priorities, and aggregated via
operators such as weighted linear combination or ordered-weighted averag-
ing. The resulting surfaces can be ranked, thresholded, or embedded as ob-
jectives or constraints in location-allocation and land-use optimization mod-
els. By converting discrete rules and trade-offs into a transparent gradient
rather than binary masks, they provide an auditable bridge between empiri-
cal evidence and spatial optimization routines (Malczewski & Rinner, 2015).

Figure 3 - Workflow anatomy - Pseudocode. AI Agents are a possible extension to the workflow. 
Source: Authors (2025)
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Adopting a Lean Canvas Model (LCM)
The starting point is explicit articulation of the reading objective, because dif-

ferent urban stakeholders interrogate the same territory with incommensurate 
questions: translating stakeholder’s objectives in quantified input values. In the 
present case, the objective is to introduce and compute an Urban Suitability 
Score (USS) across all Urban Suitability Units (USUs) to identify locations most 
conducive to hosting the next “archipuncture”. To make the translation from 
goals to code auditable, a Lean Canvas Model (LCM), - originally derived from 
business-oriented frameworks for its directness, specificity, and clarity - is here 
adopted and adapted to the urban analytical context (Osterwalder & Pigneur, 
2010). It is important to note that this scenario remains a hypothetical construct, 
employed solely to test and validate the methodological pipeline as a first pro-
totype, rather than to reproduce an empirically exact planning case. Neverthe-
less, the LCM itself is not intended to build a conceptual narrative, but a clear 
articulated vision with compact design specification which can be interpreted 
and translated into operationable input values for the later coming parametric 
script (Table 1). For this reason, it reframes the analytical workflow into a dual 
register: (a) the language of the stakeholder and (b) the translation apparatus 
of the urban/architectural specialist. Rather than enumerating every computa-
tional detail, the canvas captures the essentials of decision-making by naming 
the unit of analysis (USU), aligning it with stakeholder objectives, and render-
ing qualitative aspirations into quantifiable proxies. Objectives such as pres-
tige, visibility, or cost efficiency are assumed for the investor as a relevant case 
study. Each row of the canvas documents how raw features like distance to the 
city center (aerial, by walking, by car), proximity to adjacent units, or surface 
area are converted into normalized indicators and weighted formulas that struc-
ture the Urban Suitability Score (USS) metric. In this way, the table functions 
as both a communicative device and a computational lead; revealing the logic 
of translation from human-readable ambitions to machine-operable values. The 
significance of this process lies in its precision of translation. In a time where 
LLMs are constantly gaining momentum, this approach also contributes to in-
creasing the cognitive capacities of a “prompting” procedure for the users/spe-
cialists. The success of the entire workflow, in fact, depends on how accurately 
qualitative objectives are transcribed into computational formulas at this early 
stage. By explicitly defining the structure of the USS, the user can anticipate 
what constitutes a high suitability score and why. For example, if the normal-
ized USS equals 1, it signals that a given USU is the most adequate within the 
modeled system, falling into the highest-performing cluster. This numerical op-
timum is not abstract; it is tied to concrete spatial values, which may reveal, for 
instance, that the most suitable unit privileges proximity to the city center while 
simultaneously rewarding compactness of form (referring to scenario shown in 
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Table 1). Such revelations underscore why formula-writing is not a secondary 
technicality but a central act of urban reasoning. LLM reasoning could serve as 
an explorative and extensive option to the pipeline, which is further encouraged 
in future works, by leveraging AI agents’ operative platforms like n8n. (Figure 3)

Table 1. Lean Canvas Model (LCM) - Hypothetical construct - case study example to operational-
ize the pipeline. Source: Authors (2025)
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Base GIS Environment and Data Preparation
The second pipeline proposition starts in QGIS software, an open-

source GIS platform selected for its extensibility and ability to inte-
grate Python scripting for custom formulae, as well as for its seam-
less bridging with Grasshopper for subsequent computational modeling. 

The Tirana city map was initialized by connecting to official geospatial re-
positories and importing all relevant vector layers, including cadastral parcels, 
infrastructural networks (roads, utilities), public greenery, and georeferenced 
amenity locations (Figure 4/a). Each layer was harmonized into a unified co-
ordinate reference system (Tirana - 34N, EPSG:32634), cleaned of inconsist-
encies, and stored in a project-level GeoPackage to ensure reproducibility.  

Figure 4 – Extract all data from OSM plugin for QGIS in specific layers (A-Left). Overlap of all 
OSM geometries with extracted USUs as layers (B-Blue colored, on the right). At this stage, layers 
are ready to be exported as shapefiles (.shp). Source: Authors (2025)

Data Scrapping
The geometries of Tirana’s Urban Structural Units (USUs) were retrieved from 
the ArcGIS REST services published by the NTPA (National Territorial Planning 
Agency/ AKPT), publicly accessible through their online portal. The procedure 
involved connecting QGIS to the ArcGIS online feature service endpoint, which 
exposes vector data as FeatureServer layers. The service URL was accessed 
through the ArcGIS REST API, and layers corresponding to USU boundaries 
were selected and imported into QGIS using the Add ArcGIS Feature Server 
Layer functionality (Figure 4/b). This ensured that the full polygonal geometries, 
along with their attribute tables (metadata such as identifiers, surface area, and 
administrative classification), were preserved. Once imported, the USU layer 
was exported from the temporary web connection into a local geospatial format 
(GeoPackage) to guarantee reproducibility and offline accessibility. Metadata 
were inspected, normalized, and cleaned to align with subsequent analytical 
needs. The QuickOSM plug-in in QGIS served as a search engine for data 
scraping in the city scale. Parcels’ IDs, Buildings’ footprints and IDs, heights, 
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Ground levels, amenities, function, infrastructure, building-parcel correspond-
ence etc. were extracted when available (Figure 4/a). When missing attributes 
applied, the data structures were preserved and therefore these items are 
assigned as nulls. Nulls are later replaced or reduced depending on the data 
structure’s strategy in Grasshopper (Figure 5).

GIS-CAD Bridge & Export Format Recommendations
To establish an operative bridge between the QGIS environment and the al-

gorithmic design pipeline, it is essential to ensure that both spatial geometries 
and their associated attributes are transferred in a format that preserves the 
integrity of embedded metadata. This prototype considers Shapefile (.shp) for-
mat as one of the most effective to achieve full readability of QGIS layers in the 
grasshopper environment, by retaining both geometry and attribute structures 
with high fidelity. Within the Grasshopper for Rhino environment, these files can 
be ingested through the Heron v4.4 plug-in components, available for download 
through Rhino’s Package Manager. Since we are dealing with GIS data, we need 
to assure prior to import that the UTM Zone matches with the one of the shape-
file. For that, we need to call the SetSpatialReferenceSystem component and 

Figure 5 – Data scrapping + Setting Zone 34N EPSG in Grasshopper through Heron Source: 
Authors (2025).
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assign Tirana’s Zone 34N, by adding a string “EPSG:32634” as input (Figure 5). 
The advantage of this method lies in the fact that the component not only imports 
the geometrical framework but also maintains the relational data structures, en-
abling their subsequent manipulation, recombination, and transformation within 
the parametric domain of Grasshopper. It is equally important to recognize that 
QGIS is not merely a preparatory platform but also a computational environ-
ment in its own. The software allows users to calculate and attach derived at-
tributes directly to spatial features through its built-in field calculator and expres-
sion system. In practice, this means that certain formulae - particularly those 
requiring relatively simple arithmetic or aggregation across feature sets - can be 
pre-computed at the GIS stage before the dataset is transferred into Grasshop-
per. Such pre-processing can significantly reduce the computational burden on 
the parametric model, especially in workflows where high-frequency iterations 
or clustering algorithms are deployed. Thus, the decision of where to compute 

Figure 6 –Scripting pseudocode scheme organized in 3 parts: I, II, III (Above). Script detailed 
anatomy, organized in 3 parts (Below). Source: Authors (2025)
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specific indicators, upstream in QGIS or downstream in Grasshopper, becomes 
a methodological consideration in itself, contingent upon the needs of the Lean 
Canvas Model (LCM) and the scale or complexity of the urban analysis being un-
dertaken. A pseudocode followed by the full script is then constructed (Figure 6)

Parametric Pipeline – PART I: Attributes
Prior to computation, the USU layer is checked for topology errors (gaps, over-

laps). Invalid geometries are repaired, and a planar coordinate reference sys-
tem with metric units is enforced to ensure that distances and densities acquire 
matching virtual proportions. Where city center is referenced as a distance an-
chor, the center point is defined a priori and documented (e.g., the centroid of a 
designated central business district polygon), noting that a different anchor can 
be substituted if a stakeholder’s objective differs. In our case, the city center will 
serve as an attractor attribute, as priorly specified in the LCM (Table 1). But geo-
graphical features of Tirana restrict the existence of high-density urbanism to an 
area much smaller than its administrative expansion. For this reason, the map 
needs to consider the scope of expansion in relation to the scaling needs of read-
ing it. Figure 7 shows how in our case, USUs were culled under a conditional ex-
pression in relation to their distance from the city center. A radius of 10 kilometers 
was considered adequate for investigating the archipunctural potentials of Tira-
na today, covering up an area which corresponds also to the one of Tirana 2030. 

Figure 7 –a) Import all layers in the Grasshopper environment. b) Select only USUs inside a 
10km radius area. c) Cull and restructure data branches accordingly. Elefront plugin was used for 
visualization. 

Attributes definition. The Urban Suitability Score (USS) must derive from the 
systematic translation of investor objectives into normalized, weighted attrib-
utes assigned to each Urban Structural Unit (USU) taken under analysis. The 
method ensures that qualitative ambitions (prestige, visibility, feasibility) are 
transformed into reproducible spatial indicators. From the use case, 3 main 
attributes were calculated and used as a testbed for the pipeline: 

a) Centrality - is calculated as the inverse Euclidean distance between the 
USU centroid and the city-center coordinates:

This captures the investor’s preference for locations whose spatial centrality 
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Figure 8 –(a) - Proximity Links, merged & joined (Left); (b) - Proximity Links, clustered by sur-
rounding density (blue< to red>) (Right). Source: Authors (2025).

amplifies visibility, symbolic leverage, and infrastructural integration. Yet cen-
trality may be conceptualized and measured through multiple operative regis-
ters. One can, for instance, compute the aerial distance to the center, which ex-
presses not only a geometrical proximity but also a strategic positioning within 
the territorial frame of the city - an index often correlated with institutional prior-
ities for urban interventions and the escalation of real estate values. A different 
reading emerges when centrality is traced along pedestrian accessibility. Since 
the walking time required to reach the city’s core mediates tourism-related po-
tentials, diverging from mere aerial measures privileges experiential and infra-
structural continuity. Finally, vehicular centrality introduces an additional layer 
of interpretation, where distance is recalibrated through road-network routing 
and traffic patterns, disclosing those urban units that, while slightly displaced 
in geometric terms, are effectively more integrated into the metabolic flows of 
the city, offering a distinct advantage in relation to central amenities and the 
dynamics of urban fluxes. All these could be route calculated by constructing 
an additional Urbano Model through the Urbano plugin for Grasshopper, avail-
able under the PackageManager of Rhino 8. It is suggested to not compute 
all parcel calculations at once, due to the heavy amount of computational time 
needed to have the whole model of Tirana. Instead, this step can be integrat-
ed as a secondary testbed for USUs which are under final considerations. 

b) Adjacency is expressed through a proximity index based on contigui-
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ty. For each USU, the number and quality of its direct neighbors are quan-
tified through an adjacency matrix. Neighboring USUs with higher density or 
activity scores increase the adjacency index, normalized between 0 and 1:

where Aij indicates adjacency and Dj denotes the density/activity score of unit j.
 By clustering the 3D point proximities of USU centroids in relation to their 

distance from the city center and their respective area sizes, one can expose 
the latent structure of the urban fabric beyond its visible geometry. Such an 
analysis reveals whether parcels tend to consolidate into tightly packed cen-
tral clusters or remain peripheral enclaves, thereby disclosing patterns of 
cohesion and fragmentation in the city’s growth. The inclusion of area size 
differentiates expansive parcels, often associated with institutional or infra-
structural logics, from fine-grained units more likely tied to residential or incre-
mental development; while the centrality gradient exposes tensions between 
small, over-pressured inner-city lots and large, underutilized tracts at the edges. 

c) Capacity / Structural Capacity (SC) is related to the area of each USU 
alongside its normative indicators, providing insights on its spatial poten-
tial for archipunctural insertion. Structural Capacity (SC) in this case is con-
sidered as an aggregate of 3 attributes: existing Floor Area Ratio (FAR) 
- measures current built intensity and indicates revealed market demand, 
Building Coverage Ratio (BCR) - expresses the degree of ground cover-
age, where higher values reduce open space and increase ecological stress.

, and Regulatory Headroom (RH) - quantifies the remaining allowance before 
statutory limits are reached. Three structural archetypes can be generally de-
ducted:

High FAR + High BCR + Low headroom → saturated morphology, high market 
signal but low insertion capacity.

Moderate FAR + Moderate BCR + High headroom → balanced morphology, 
prime candidate for intensification.

Low FAR + Low BCR + Very high headroom → slack condition; suitability 
depends on adjacency and accessibility.

Capacity is normalized relative to the largest USU. 

Weight Assignment and Formula Construction. 
Weights (w1, w2, w3…wn) are introduced to align the formula with investor 

priorities: centrality as a measure of prestige, adjacency as a measure of visi-
bility and synergy, and structural capacity as a measure of feasibility. Weights 
must sum to 1. The USS is defined for each USU as:
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Parametric Pipeline – PART II: Clustering
Each USU is represented as a vector xi= [Centrality i, Adjacency i, Ca-

pacity i]. The dataset of all vectors is partitioned using the Gaussian Mixture 
Model (GMM) clustering algorithm. Unlike K-means clustering, which par-
titions data by minimizing Euclidean distance to centroids, GMM models the 
distribution of the data as a weighted sum of K Gaussian components, al-
lowing clusters to vary in orientation and spread. This probabilistic formu-
lation is considered as more appropriate because of the hypothesis that ur-
ban units may belong to overlapping morphological regimes rather than 
mutually exclusive types. Formally, the likelihood of an observation xi is:

Figure 8 –(a) - Proximity Links, merged & joined (Left); (b) - Proximity Links, clustered by sur-
rounding density (blue< to red>) (Right). Source: Authors (2025).

In the GMM framework, reproducibility and variability are governed not by 
centroid initialization but by the specification of the random seed in the Expec-
tation–Maximization (EM) algorithm on the GMM likelihood results. The seed 
determines the starting values for means, covariances, and mixture weights. 
Fixing the seed ensures identical log-likelihood trajectories and stable cluster 
assignments across runs. Allowing variability, by contrast, enables the testing 
of robustness, as different initializations may converge toward alternative local 
maxima of the likelihood function.

Parametric Pipeline – PART III: Visualization
The geo-visualization translates the clustering output into a legible territo-

rial field. Each Urban Structural Unit (USU) inherits a discrete cluster label, 

where:
πk - are the mixing coefficients with ∑kπk=1,
μk - is the mean vector of cluster k,
Σk - is the covariance matrix of cluster k,
N (⋅) - denotes the multivariate normal density,
Θ={πk,μk,Σk}K/k=1  are the parameters estimated.
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indexed to the Urban Suitability Score (USS) domain, as well as a continuous 
USS value with a normalized domain [0, 1]. For communicative clarity, we lay-
er a georeferenced choropleth that assigns a stable hue to each cluster class 
(the categorical reading). We construct a gradient heatmap that encodes the 
detailed normalized USS, revealing deep intra-cluster intensities. However, this 
would be more beneficial and preferred in a context where more data are tak-
en into consideration for detailing more clusters (the scalar reading). The map 
is produced directly on the USU polygonal surfaces, preserving topology and 
IDs, while a light contiguity-aware smoothing of the scalar surface (queen ad-
jacency) can be optionally applied to prevent false visual discontinuities at unit 
edges (without distorting computed d values). This dual rendering opens up the 
possibility for exploring the threshold between reproducibility (cluster classes) 
and sensitivity (local USS variation) in a single cartographic frame. (Figure 9)

Figure 9. Example Map, colored in base of the USUs’ Urban Suitability Scores, structured along a 
3 clusters’ resolution. Infrastructure is exposed through overlapping route calculations through the 
Urbano Model, from each parcel to the center. (a) Above - Map showing USS’s as per Table 1, over-
lapped with infrastructural flows; (b) Below - Clean USS Map + Buildings. Source: Authors (2025)
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Optimization until Trend Stabilization
While the GMM clustering routine provides an initial partitioning of Urban 

Structural Units (USUs), the stochastic nature of centroid initialization renders 
each run susceptible to variability. To mitigate this dependency and ensure ro-
bustness, the workflow integrates an optimization loop via the Galapagos evolu-
tionary solver embedded in Grasshopper. Unlike deterministic algorithms, Gal-
apagos treats clustering as an evolving search space in which both the number 
of clusters and the random seed of initialization are framed as genomes to 
be iteratively recombined and tested. The domain for cluster size is bounded 
between 3 and 100, capturing both coarse-grained and fine-grained interpreta-
tions of the urban field, while the seed is allowed to vary continuously to explore 
alternative local minima.

The fitness criterion guiding the evolutionary process is defined as the max-
imization of intra-cluster probability, or more specifically, the likelihood that an 
input vector of normalized attributes (centrality, adjacency, structural capacity) 
consistently belongs to a stable cluster. This probabilistic framing aligns with 
the methodological aim of producing territorial readings that are not contingent 
upon single random initializations but instead converge toward solutions that 
remain valid across multiple stochastic conditions. Through successive gener-
ations, Galapagos executes crossover, mutation, and selection functions that 
gradually steer the population of candidate solutions toward higher stability: 
pruning configurations that overfit or collapse prematurely. (Figure 10)

Figure  10. Stabilization of USS waves of possibilities when searching to maximize probability of likelihood 
results. Observed over 10 optimizations of 5 minutes each, showing trends in the visual results, suggest-
ing the highest probability through overlapping similarities per each scenario. Source: Authors (2025)
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Results
The stabilized clustering scenarios, as derived through the evolutionary opti-

mization process, revealed a consistent pattern of urban suitability across Tira-
na’s structural units. High-scoring clusters converged around central and infra-
structurally privileged zones, particularly those adjacent to the city center, while 
peripheral units showed greater volatility before reaching stabilization. This 
differentiation underscores the model’s capacity to translate qualitative inves-
tor objectives into spatialized outputs that persist beyond stochastic variance. 
(Figures 10, 11)

Figure 11. Explorative Maps of USS, colored in base of the USUs’ Urban Suitability Scores, struc-
tured along a 23 clusters’ resolution. Source: Authors (2025)

Read in time, the Galapagos runs map a register of “waves of dependen-
cies”: probability-weighted vectorial alignments that thicken or recede, as the 
evolutionary solver converges (Figure 11). The result is a more flexible and less 
abstract territorial reasoning model. It captures latent fluctuations of opportuni-
ties and risks as gradients of probability dependencies. Stabilized clusters mark 
potential strategic investment logic while the semi-stable ones suggest contest-
ed morphologies and governance seams. In post-transition conditions, these 
overlays have the potential to provide stakeholders with a clear audit trial, which 
can help inform spatial consequences and make visible how interests condense 
into durable corridors. This creates space for negotiated urban futures. 

Refering to figure 10, the early iterations show a lot of instabilities: cluster 
centroids shift rapidly and assignments fluctuate. This exposes the models sen-
sitivity to both seed values and cluster size. However, after the first wave of 
evolutionary iterations, the trajectories begin to stabilize.  Local impacts that 
initially oscillated across competing clusters gradually consolidate into coherent 
patterns. This stabilization does not imply a single absolute partition. Instead, 
it suggests a probabilistic field in which chertain USUs emerge as consistent 
high-probability members of particular clusters, regardless of seed varation. As 
a consequence, the evolutionary solver transforms randomness into a way to 
check the structure of its own generative model, revealing which configurations 
are structurally robust on map, and which are artifacts of initialization.

The time-dependent nature of this optimization adds another layer of complex-
ity to the analysis. By observing how clusters consolidate across generations, it 
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becomes possible to distinguish between temporary groupings and those with 
durable structural logic. For example, central USUs near the city center often 
become high-performing clusters only after a limited number of iterations, while 
peripheral or morphologically ambiguous units oscillate longer before stabiliz-
ing. This differential rate of stabilization offers insight into how resilient spatial 
patterns are under conditions of incomplete information and shifting priorities. 
However, the mapping of such oscillations is suggested to be further explored 
and analyzed in the future.

To evaluate its computational robustness and interpretive clarity, the prototype 
workflow was tested in a pedagogical experiment during Tirana Architecture 
Weeks (TAW24) at POLIS University, in November 2024. A group of 37 fourth-
year architecture and urban design students was tasked to engage with the 
workflow, in order to construct and analyze possible archipuncturing scenarios 
across Tirana. Students speculated about different scenarios and translated the 
set of qualitative goals into weighted attributes. We saw how GMM clustering, 
together with evolutionary stabilization, rendered these goals into simplified, da-
ta-driven territorial maps on which we could understand and interpret upon. As 
illustrated in Figure 12, the exercise facilitated a collective understanding of how 
complex urban  dynamics can be re-encoded into operational models without 
oversimplifying the qualitative underpinnings. The USUs in the maps used by 
the students were further narrowed down based on the specific topographical 
and rural characteristics, as a “discriminative” input. In their scenarios, this was 
a key step to better understand interests on a pre-confined and adequate ter-
ritorial scale. This step minimizes the risk of interpretive distortion by removing 
USUs that do not meaningfully participate in the city’s active urban fabric for that 
specific scenario. 

The workshop confimed that the methodology is not only computationally 
viable but also communicable across different levels of expertise. Students, 
many of whom had no prior experience with clustering algorithms, were able 
to comprehend the translation logic between stakeholder objectives and urban 
outputs. Furthermore, they were able to engage in critical discussions regarding 
the implications of varying weight assignments or optimization parameters. This 
demonstrates that the workflow is as much a tool for territorial reasoning as it 
holds also potential to become a pedagogical instrument, capable of fostering 
analytical literacy in urban studies and design education.

Discussion
This study proposes a compact, auditable workflow that converts heteroge-

neous stakeholder aims into reproducible territorial readings. Three design de-
cisions were central. First, the Urban Structural Unit (USU) was adopted as the 
operative spatial kernel, permitting city-scale reasoning without collapsing into 
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Figure 12. Students’ urban analyses by introducing their interpretation of the Urban Suitability 
Scores. Source: Retrieved from authors in 2025. Part of POLIS archive, under the Tirana Architec-
ture Weeks 2024 Documentation Materials - accessible through internal platforms and published 
online on social media and official TAW website. Students: Gledis Sinanaj, Sara Nini, Joana Veizi 
(Right side) - Ankela Doci, Klea Maci, Jonian Celaj (Left side). Workshop leaders: Marco Mondello, 
Fulvio Papadhopulli, Albi Alliaj. Also available on the Miro board: https://miro.com/app/board/uXjV-
LcOoqRU=/

parcel-level noise or drifting into administrative abstraction. Second, qualitative 
objectives are rendered into normalized indicators through a Lean Canvas Mod-
el translation, making the path from intent to computation explicit and revisable. 
Third, GMM clustering was regularized by an evolutionary loop, where clus-
tering number and initialization seed were treated as genomes, and solutions 
were selected by their capacity to maximize membership likelihood and remain 
stable under stochastic variation. Together, these steps turn a potentially fragile 
classification into a stabilized ensemble that can be interrogated, compared, 
and replicated.

The stabilized patterns have practical meaning. Units consistently converg-
ing into high-performing clusters align with centrality, adjacency, and structural 
capacity in ways that are legible to decision-makers; units that oscillate longer 
before convergence are revealed as ambiguous opportunities or risk zones. In 
other words, optimization is not a cosmetic post-processing step but an epis-
temic filter that distinguishes robust territorial signals from artifacts of initializa-
tion. For actors negotiating post-transition urbanism - where permits, infrastruc-
tures, and market cycles rarely cohere - this distinction is not trivial; it informs 
whether an “archipunctural” proposal is grounded in structure or in noise.

Pedagogically, the workflow proved communicable and transferable. When 
introduced to 37 fourth-year students during TAW24, participants could articu-
late objectives, assign weights, and read back the territorial consequences in 
Figure 12’s gradient maps. The exercise validated two claims: that the trans-
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lation apparatus makes the computational core inspectable by non-specialists; 
and that stabilized clustering supports comparative reasoning across scenarios 
without presuming a single “correct” map. These are non-trivial capacities for 
studios, municipal units, and private offices alike.

At the same time, this remains a prototype. Its outputs are contingent on indi-
cator choice, normalization strategy, and weight vectors; GMM assumes rough-
ly convex clusters and similar within-cluster variance; and data incompleteness 
can bias centrality and adjacency measures. These constraints are not dis-
qualifying; they are parameters to manage. In practice, they can be addressed 
by: (i) subjecting weight vectors to sensitivity analysis; (ii) triangulating GMM 
ensembles with alternative partitions (e.g., K-Means, spectral, or density-based 
models) to test invariants; and (iii) incrementally enriching inputs with regula-
tory, mobility, or temporal permit data as they become available. The point is 
not to freeze a definitive taxonomy of Tirana, but to maintain an ever-evolving, 
inspectable and transferrable pipeline where assumptions are explicit and can 
be tested.

Future extensions are direct and pragmatic: embed uncertainty reporting next 
to each map; implement multi-objective evolutionary search when stakehold-
ers compete on incompatible criteria; and formalize a cross-validation routine 
against realized interventions to calibrate indicators and weights over time. 
These steps preserve the prototype’s agility while tightening its evidentiary 
claims, advancing it from a catalyst for informed debate toward a deployable 
instrument for practice.

Lastly, an important structural question arised during the workshop, which far 
exceeds the intentions of the research itself. How does the outter overall pe-
rimeter of the considered maps, affect the overall results? This question opens 
up many uncertainties we have about the digital world in general, about when 
and what to consider as “the end” of the pysical boundaries in a digital realm? 
How do we know where is the right scale to break dependencies across them 
for a specific analytical process? These are to be tested, not only throughout 
our methodological proposal, but also in other analytical or reasoning models.

Further Suggestions. Traffic and temporal dynamics can be integrated with-
out changing the core design pattern. Time-stamped exposures (e.g., average 
speeds or counts by hour) are aggregated to USUs by joining sensor locations 
to the network and then to USUs via network-constrained buffers; a temporal 
weighting kernel (for example, emphasizing peak periods) collapses the hourly 
profile into a scalar per USU, which is then normalized and introduced as an-
other indicator in USS. Where market “boom/recession” mapping is required, 
the same logic applies: price change gradients or listing density dynamics are 
computed over moving windows, smoothed to reduce noise, and aggregated 
to USUs before normalization. The method treats these additions as plug-ins: 
15



the LCM declares the new indicator, the import block reads its layer, and the 
downstream machinery remains unchanged.

Because data accessibility in Tirana can be intermittent, the pipeline antici-
pates manual digitization or attribute entry when scraping fails. In Grasshopper, 
each indicator has an optional manual override port that accepts a user-sup-
plied value per USU. If a manual value is present, it supersedes the computed 
value for that indicator and USU; the override is logged in an audit table with 
a timestamp and a free-text justification. This design preserves the ability to 
proceed under imperfect data while preventing silent substitutions that would 
undermine reproducibility. Where entire layers are missing (for example, parcel 
polygons in a newly annexed area), the LCM can specify a mask so that ex-
cluded USUs are clearly rendered as “no-data” rather than spuriously assigned 
low suitability.
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