

ICCSM 2025 BOOK OF PROCEEDINGS

1ST INTERNATIONAL CONFERENCE **COMPUTER SCIENCES AND MANAGEMENT**

WHERE DIGITAL & BUSINESS BECOME HUMAN

26-27 June 2025 | Tirana, Albania

26-27 JUNE, 2025 TIRANA, ALBANIA

ISBN 9789928347123

DOI 10.37199/c41000300

Copyrights @POLIS Press

26-27 JUNE, 2025 TIRANA, ALBANIA

CONFERENCE CHAIR

Assoc. Prof. Merita Toska, POLIS University

PARTNER UNIVERSITIES

POLIS University, Albania Université Lyon 2, France Università Telematica San Raffaele, Italy University of Western Macedonia, Greece International University of Sarajevo, Bosnia & Herzegovina Mother Teresa University, North Macedonia Gebze Technical University, Turkey Public International Business College, Kosovo Rochester Institute of Technology – RIT Global Campus, Kosovo Co-PLAN, Institute for Habitat Development, Albania Al Hub Albania, Albania Luralux, Albania

ORGANISING COMMITTEE

Dr. Blerta Mjeda

Dr. Emiliano Mankolli

Msc. Sonila Murataj

Msc. Andia Vllamasi

Msc. Klejda Hallaci

Msc. Erilda Muka

Msc. Armela Reka

26-27 JUNE, 2025 TIRANA, ALBANIA

SCIENTIFIC COMMITTEE

- Prof. Dr. Jérôme Darmont, Université Lumière Lyon 2 (France)
- Prof. Dr. Lydia Coudroy de Lille, Université Lumière Lyon 2 (France)
- Prof. Dr. Jim Walker, Université Lumière Lyon 2 (France)
- Prof. Dr. Besnik Aliaj, POLIS University, (Albania)
- Prof. Dr. Daniela Sica, San Raffaele Roma University, (Italy)
- Prof. Dr. Stefania Supino, San Raffaele Roma University, (Italy)
- Prof. Dr. Arbana Kadriu, South East European University (North Macedonia)
- Prof. Dr. Ing. Lejla Abazi-Bexheti, South East European University (North Macedonia)
- Prof. Dr. Yusuf Sinan Akgül, Gebze Technical University (Turkey)
- Assoc. Prof. Dr. Galia Marinova, Technical University of Sofia (Bulgaria)
- Assoc. Prof. Dr. Vasil Guliashki, Technical University of Sofia (Bulgaria)
- Assoc. Prof. Mehmet Göktürk, Gebze Technical University (Turkey)
- Assoc. Prof. Yakup Genç, Gebze Technical University (Turkey)
- Assoc. Prof. Habil Kalkan, Gebze Technical University (Turkey)
- Assoc. Prof. Dr. Godiva Rëmbeci, POLIS University (Albania)
- Assoc. Prof. Dr. Xhimi Hysa, POLIS University (Albania)
- Assoc. Prof. Dr. Merita Toska, POLIS University (Albania)
- Assoc. Prof. Dr. Sotir Dhamo, POLIS University (Albania)
- Dr. Gennaro Maione, San Raffaele Roma University, (Italy)
- Dr. Nicola Capolupo, San Raffaele Roma University, (Italy)
- Dr. Benedetta Esposito, San Raffaele Roma University, (Italy)
- Dr. Venera Demukaj, Rochester Institute of Technology (Kosovo)
- Dr. Emil Knezović, International University of Sarajevo (BiH)
- Dr. Šejma Aydin, International University of Sarajevo (BiH)
- Dr. Azra Bičo, International University of Sarajevo (BiH)
- Dr. Šejma Aydin, International University of Sarajevo (BiH)
- Dr. Azra Bičo, International University of Sarajevo (BiH)
- Dr. Hamza Smajić, International University of Sarajevo (BiH)
- Dr. Panagiotis Kyratsis, University of Western Macedonia (Greece)
- Dr. Delina Ibrahimaj, Minister of State for Entrepreneurship and Business Climate (Albania)
- Dr. Elona Karafili, POLIS University (Albania)
- Dr. Emi Hoxholli, POLIS University (Albania)
- Dr. Shefqet Suparaku, POLIS University (Albania)
- Dr. Manjola Hoxha, POLIS University (Albania)
- Dr. Elsa Toska, POLIS University (Albania)
- Dr. Emiliano Mankolli, POLIS University (Albania)

26-27 JUNE, 2025 TIRANA, ALBANIA

- Dr. Albina Toçilla, POLIS University (Albania)
- Dr. Sonia Jojic, POLIS University (Albania)
- Dr. Ilda Rusi, POLIS University (Albania)
- Dr. Ledian Bregasi, POLIS University (Albania)
- Dr. Klodjan Xhexhi, POLIS University (Albania)
- Dr. Endri Duro, POLIS University (Albania)
- Dr. Remijon Pronja, POLIS University (Albania)
- Dr. Vjosë Latifi, International Business Collage Mitrovica (Kosovo)
- Dr. Agron Hajdari, International Business Collage Mitrovica (Kosovo)

26-27 JUNE, 2025 TIRANA, ALBANIA

Table of Contents

INFLUENCER MARKETING AND HUMAN CAPITAL:
THE STRATEGIC ROLE OF EMPLOYEES IN THE FOOD INDUSTRY
RECONFIGURING WORK IN THE AGRIFOOD CHAIN: PROFILING EMPLOYABILITY SKILLS VIA BIG
DATA AND TRANSFORMER-BASED LANGUAGE MODELS23
USER-CENTERED DIGITAL PRODUCT DESIGN: A TRANSPORTATION-RELATED CASE STUDY 34
REGIONAL TRANSPORT CORRIDORS: A COMPARATIVE ANALYSIS OF ALBANIA'S PERFORMANCE
WITH NEIGHBOURING COUNTRIES 48
THE ALBANIAN INNOVATION ECOSYSTEM: POLICIES, PARTNERSHIPS, AND THE FUTURE OF
ENTREPRENEURSHIP 60
THE SIX-HOUR WORKDAY: LITERATURE AND CASES ON PRODUCTIVITY, WELL-BEING, AND
ECONOMIC IMPLICATIONS78
ETHICAL ISSUES IN ARTIFICIAL INTELLIGENCE86
INCLUSIVE PEDAGOGY AT SCALE: A MODEL FOR BUILDING CAPACITY THROUGH DIGITAL
TRAINING AND POLICY IMPLEMENTATION95
BLOCKCHAIN CRYPTOGRAPHY AND THE FUTURE OF DIGITAL CURRENCY SECURITY103
DIGITAL TWINS AS CATALYSTS FOR SUSTAINABILITY EDUCATION IN UNIVERSITY CAMPUSES: A
CASE STUDY AT POLIS UNIVERSITY WITHIN THE FRAMEWORK OF EDUCATION 4.0115
YOUTH ENGAGEMENT AND DIGITAL CAPACITY BUILDING IN EUSAIR132
BRIDGING THE HUMAN-AI DIVIDE: ENHANCING TRUST AND COLLABORATION THROUGH
HUMAN-TO-HUMAN TOUCHPOINTS IN ENTERPRISE AI ADOPTION144
THE ROLE OF AI IN PERSONALISED LEARNING158
BRAND INTEGRATION AND CONSUMER PERCEPTION IN POST-MERGER SCENARIOS: THE CASE OF
ONE ALBANIA'S CUSTOMER-CENTRIC MARKETING STRATEGY162

26-27 JUNE, 2025 TIRANA, ALBANIA

INFORMATION DIGITALISATION AS A KEY DRIVER TO ACHIEVE IMPROVEMENT OF SME	
PERFORMANCE	187
SAFEGUARDING DIGITAL AUTHENTICITY AND WOMEN'S IDENTITY THROUGH DEEPFAKE	
DETECTION	198
AUTOMATED STRATEGIES FOR DEFINING A JOB INTERVIEW	211
FROM CITIZEN VOICES TO BUSINESS VALUE: ARTIFICIAL INTELLIGENCE IN PARTICIPATORY	
ECOSYSTEMS	222
AI AND IMAGE PROCESSING. SOME KEY MOMENTS IN THE IMPLEMENTATION OF THESE	
METHODS	233
AI IMAGE GENERATION AND ITS POSSIBLE CONTRIBUTIONS	265
IN ARCHITECTURAL LANGUAGE	265

26-27 JUNE, 2025 TIRANA, ALBANIA

13

THE ROLE OF AI IN PERSONALISED LEARNING

DOI: 10.37199/c41000313

Laura SHEHU

Independent Researcher (Tirana, Albania) laura shehu@universitetipolis.edu.al ORCID 0009-0008-6693-0450

Klejda HALLAÇI

Independent Researcher (Tirana, Albania) klejda.hallaci@gmail.com ORCID 0009-0007-5543-6249

Abstract

As digital education evolves rapidly, Artificial Intelligence (AI) is beginning to shape how we approach personalised learning. This paper explores how AI systems can analyse student behaviour, adapt learning materials in real time, and provide timely, targeted feedback to keep students engaged and support their progress. The focus is on three key areas: intelligent tutoring systems, adaptive assessments, and personalised content recommendations. Along the way, we also touch on core machine learning techniques such as classification, clustering, and reinforcement learning, and show how they fit into educational contexts. Finally, the paper raises important ethical issues, particularly regarding data privacy and algorithmic bias. By looking at current tools and what is coming next, we aim to show how AI could help create more flexible, responsive learning paths that respect each student's pace, preferences, and needs. These developments highlight how AI may be used to tailor learning paths and make data-driven decisions to maximise instructional tactics. Thorough evaluation of AI-driven treatments should be a top priority for future research to ensure their pedagogical efficacy, scalability, and ethical compliance.

Keywords: Artificial Intelligence, Machine Learning, Intelligent Tutoring, Data Privacy, **Algorithmic Bias**

26-27 JUNE, 2025 TIRANA, ALBANIA

I. INTRODUCTION

In recent decades, technological advancements have completely changed how we learn, teach, and interact with knowledge. One of the most influential forces in this transformation is Artificial Intelligence (AI), which is quickly becoming a key tool in shaping personalised learning experiences. As the traditional "one-size-fits-all" approach to education continues to fall short, AI offers new possibilities for tailoring learning paths based on each student's pace, needs, and learning style.

Al technologies are reshaping education by enabling adaptive learning systems that respond to individual students. According to Holmes, Bialik, and Fadel (2019), AI can enhance Learning by analysing student behaviour and adjusting educational content in real time. Intelligent tutoring systems, adaptive testing platforms, and recommendation algorithms are among the most promising applications supporting this shift (Roll & Wylie, 2016). Still, these benefits come with important ethical concerns, such as data privacy and algorithmic bias (UNESCO, 2019).

While personalisation in education is not a new concept, the integration of AI has introduced entirely new opportunities to make it scalable and responsive. Machine learning algorithms can analyse student performance data, predict future challenges, and suggest the most effective content or strategies for each learner. These technologies are becoming increasingly common in digital learning environments, from online classrooms to self-paced learning apps.

However, despite their potential, these systems face significant challenges. Issues such as protecting student data, ensuring transparency in algorithms, and avoiding bias rooted in historical data require careful attention when using AI in education.

This paper explores how AI is being used to create personalised learning environments, focusing on three key areas: intelligent tutoring systems, adaptive assessments, and recommendation platforms. Through real-world examples, we will examine the benefits and limitations of these tools and address the ethical considerations involved in their use. The aim is to provide a realistic and balanced view of how AI is shaping the present and future of education.

II. LITERATURE REVIEW

II.1 Artificial Intelligence and Personalised Learning

Recent literature shows that AI-powered personalised learning is no longer just a future goal; it is already being developed and applied in real educational settings. Experts in educational technology define personalisation as the ability to adapt the content, pace, and method of learning to fit each student's individual needs. Using tools such as classification, clustering, supervised learning, and reinforcement learning, AI systems can analyse student data and make

26-27 JUNE, 2025 TIRANA, ALBANIA

real-time decisions to support tailored learning.

II.2 Intelligent Tutoring Systems (ITS)

Intelligent Tutoring Systems are among the earliest and most extensively studied uses of AI in education. They act as virtual teachers, simulating one-on-one instruction by tracking students' understanding and providing feedback tailored to individual performance. Platforms like AutoTutor and Socratic Tutor use natural language processing to create interactive, dialoguebased learning experiences. Research shows these systems are especially effective in boosting conceptual understanding and motivation, particularly in STEM subjects (science, technology, engineering, and mathematics).

II.3 Adaptive Testing

Adaptive testing adjusts the difficulty of test questions based on the student's previous answers, offering a more accurate and individualised assessment of knowledge. This approach avoids giving questions that are too easy or too difficult, keeping learners engaged. Real-world applications include the GRE's adaptive sections and language learning platforms like Duolingo, both of which use AI to fine-tune the difficulty and relevance of their content.

II.4 Content Recommendation Systems

Recommendation systems help guide students to appropriate materials or exercises based on their past behaviour and performance. These systems build a learning profile for each user and suggest content that aligns with their level and interests. Knewton, for instance, uses real-time analytics to generate tailored recommendations. Similar adaptive approaches are found in widely used platforms like Khan Academy and Coursera, which personalise learning across a variety of subjects.

II.5 Ethics and Critical Issues

Despite their promise, Al-based systems raise several concerns. One major issue is the lack of transparency in decision-making — often referred to as the "black box" effect — which makes it hard to evaluate how or why certain decisions are made about students. In addition, protecting student privacy and avoiding unintended algorithmic bias remain serious challenges. Many researchers call for ethical protocols, regular audits, and transparent data practices to ensure that AI in education is both fair and accountable.

As shown in Table 1, AI is being applied across a wide range of educational platforms, each with a slightly different focus. Intelligent tutoring systems like AutoTutor engage students in structured, conversation-like interactions to provide support and feedback. In contrast, platforms such as Duolingo and the GRE Adaptive Test use adaptive testing to personalise assessments and keep learners challenged at the right level. Meanwhile, content

26-27 JUNE, 2025 TIRANA, ALBANIA

recommendation systems like Knewton and Khan Academy rely on analytics and classification to track progress and suggest appropriate resources. Together, these tools highlight the diverse ways AI can enhance learning by making it more responsive to individual needs. These systems interpret learner behaviour and provide dynamic educational experiences by utilising a variety of machine learning approaches, including reinforcement learning, natural language processing, and predictive analytics. Integration with pedagogically competent instructional design is just as important to their efficacy as algorithmic complexity. Continuous empirical assessment will be necessary as AI technologies continue to develop to ensure these platforms actually enhance learning outcomes across a variety of educational settings.

System	Туре	AI Technology	Main Function	Use Case
AutoTutor	Intelligent Tutoring	Natural Language Processing	Offers tailored feedback via dialogue	STEM Education
Duolingo	Adaptive Testing & Learning	Supervised Learning	Adjusts questions/content based on response	Foreign language learning
Knewton	Recommendatio n System	Data Analytics, Classification	Suggests personalised learning content	University-level courses
Khan Academy	Recommendatio n System	Real-Time Adaptation	Tracks progress, recommends material	Primary & secondary school
GRE Adaptive Test	Adaptive Testing	Adaptive Assessment Algorithm	Adjusts question difficulty in real time	Standardised testing

Table 1. Comparison of Al-Based Platforms in Personalised Education

Source: Author's processing

III. METHODOLOGY

This study adopts a qualitative, analytical, and comparative approach to explore how artificial intelligence (AI) technologies are shaping personalised learning in education. Due to the lack of original empirical data, the research relies on a comprehensive review of existing sources, including scientific literature, technology reports, official documentation from wellknown platforms (such as Duolingo, Knewton, and Khan Academy), and peer-reviewed articles from the fields of education and computer science.

A comparative framework is used to evaluate the features, functionality, and effectiveness of different AI systems used in educational contexts. The analysis is organised around three main categories of applications:

- A. Intelligent Tutoring Systems (ITS)
- B. Adaptive Testing Systems

26-27 JUNE, 2025 TIRANA, ALBANIA

C. Content Recommendation Platforms

For each category, a structured analytical summary has been developed, helping draw wellbalanced conclusions based on similarities and differences. Additionally, the study considers ethical concerns and potential risks, including algorithmic bias, data privacy, and the implications of automated decision-making on the learning process. By broadening the scope beyond technological advantages, the research seeks to integrate both the social and pedagogical dimensions of AI's role in education.

IV. ANALYSIS AND DISCUSSION

IV.1 Benefits of artificial intelligence in personalised learning

The integration of AI in education offers a range of benefits beyond the traditional "one-sizefits-all" model. One of the most significant advantages is the dynamic adaptation of content based on each learner's pace and learning style. Instead of following the same learning path, students can engage with personalised routes that enhance both efficiency and motivation.

For instance, on Khan Academy, if a student struggles with a specific math concept, the platform automatically provides additional exercises and videos focused on that topic before allowing them to move forward. This real-time personalisation reduces frustration and boosts engagement.

IV.2 How data flows through AI-Powered learning systems

To understand how these systems work, here is a simplified flowchart (Figure 1) of how an Al algorithm interacts with a student in a digital learning platform. The method starts with student input, including responses to questions or completion of exercises, which the system then tracks to determine performance. Al algorithms use this data to examine the student's learning habits and pinpoint both strengths and recurrent errors. Based on this research, the platform modifies the content to meet the students' needs better, adding new exercises, adjusting the pacing, or changing the difficulty levels. After that, it offers astute suggestions or focused assistance, such as pointers or additional materials. Feedback is given to students to enhance performance, resulting in more knowledgeable and efficient learning.

26-27 JUNE, 2025 TIRANA, ALBANIA

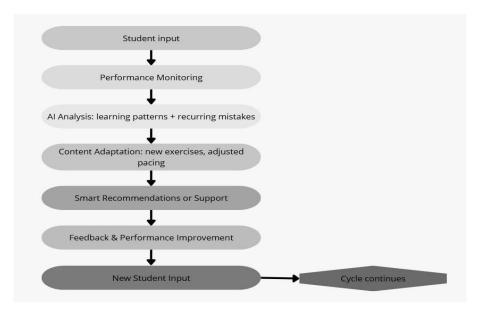


Figure 1. Al student interaction flow on a digital learning platform.

Source: Author's processing

With each encounter, this cycle is repeated and refined, resulting in a personalised, data-driven, and continuously updated learning experience. The platform becomes more accurate over time in providing tailored content and interventions as more data is gathered and the AI develops a deeper understanding of the learner's progress, preferences, and difficulties. In the end, this results in more effective learning outcomes, sustained engagement, and long-term academic success by ensuring that every student receives the appropriate support at the appropriate moment.

IV.3 Comparison to traditional learning methods

Key aspects of traditional education and Al-powered personalised learning are contrasted in Table 2. Regardless of their unique requirements or skills, all students usually follow the same pace in traditional learning contexts. Al-driven solutions, on the other hand, adapt the learning pace to each student's progress, enabling more individualised training. While in-class teachers are the only source of student support in traditional schools, AI systems provide intelligent, ondemand help available around the clock.

Feature	Traditional Learning	AI-Powered Personalised Learning
Learning pace	Same for all	Adjusted to each student
Student support	In-class teacher only	Smart assistance available 24/7
Error analysis	Limited	In-depth and automated

26-27 JUNE, 2025 TIRANA, ALBANIA

Motivation	General	Personalised and gamified	
Knowledge	Periodic	Continuous and real-time	
assessment		Continuous and real-time	

Table 2. Traditional vs. Al-powered personalised learning.

Source: Author's processing

Conventional approaches to error analysis are often constrained and time-consuming, but AI can automatically conduct comprehensive analyses to spot trends and recurring errors. While traditional motivational techniques are typically generic and broad, artificial intelligence (AI) technologies can provide individualised, gamified experiences that increase student engagement. Finally, whereas AI enables continuous, real-time examination of student understanding, traditional models of knowledge assessment occur periodically, for example, through scheduled tests. This analogy emphasises that AI is intended to support teachers rather than replace them, offering intelligent assistance and customisation that would be challenging to achieve with conventional resources alone.

IV.4 Real-world use cases

Real-world cases such as AutoTutor, Duolingo, and Knewton demonstrate that AI in education is no longer a theoretical idea-it is already in use. When implemented ethically and responsibly, AI can play a key role in improving both equity and educational quality.

- A. AutoTutor: Uses natural language processing to simulate a real-time conversation with students. It does not just give correct answers—it analyses how students express ideas and tailors feedback accordingly.
- B. Duolingo: Applies reinforcement learning algorithms to identify vocabulary or grammar rules a learner is likely to forget, then reintroduces them at the optimal moment.
- C. Knewton: A sophisticated platform used in higher education that tracks every click, answer, and pause to build an evolving learner profile. It then recommends new content or clarification in areas where the student struggles.

V. CONCLUSIONS AND RECOMMENDATIONS

The development of artificial intelligence has opened a new era for education, where personalised learning is no longer a theoretical concept but an evolving reality. This study analytically evaluated systems such as AutoTutor, Duolingo, and Knewton, showing how technologies like natural language processing, adaptive testing, and recommendation algorithms create learning experiences tailored to individual student needs.

26-27 JUNE, 2025 TIRANA, ALBANIA

However, the use of AI in education is not without risks. Data privacy, algorithmic bias, and a lack of transparency are serious challenges that require urgent solutions. The influence of algorithms on educational decision-making must be monitored and understandable by both teachers and students.

It is essential to create frameworks that prioritise ethical use of AI in education if we are to proceed responsibly. This entails implementing stringent data governance guidelines, conducting frequent audits to ensure algorithmic fairness, and involving educators in the development and supervision of AI systems. Furthermore, for teachers and students to interact critically with Al-driven tools and understand their ramifications, they must be taught digital literacy. The educational benefits of AI may be maximised while reducing potential harm by proactively addressing these issues, which will ultimately result in a more effective and equitable learning environment.

Based on the work done, key recommendations include:

- Develop clear data privacy policies aligned with international standards.
- Ensure algorithmic transparency and provide opportunities for human intervention, especially in critical educational decisions such as assessments or academic guidance.
- Train teachers to use and understand AI systems as collaborative tools, not competitors.
- Involve students in decision-making processes regarding AI—transparency fosters trust and digital awareness.
- Use AI to complement human interaction, not replace it—particularly during developmental stages of children and adolescents.

In conclusion, the future of AI in education depends on an ethical and controlled coexistence between technology and the human role in education. Only through this balance can we create systems that are truly fair, effective, and inclusive for all learners.

REFERENCES

Fadel, C., Holmes, W., & Bialik, M. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. In M. Spector et al. (Eds.), Encyclopedia of Education and Information Technologies. Springer.

https://www.scirp.org/reference/referencespapers?referenceid=3753624

Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in education. Pearson.

https://www.pearson.com/content/dam/corporate/global/pearson-dotcom/files/innovation/Intelligence-Unleashed-Publication.pdf

26-27 JUNE, 2025 TIRANA, ALBANIA

- UNESCO. (2019). Artificial intelligence in education: Challenges and opportunities. UNESCO Publishing. https://unesdoc.unesco.org/ark:/48223/pf0000366994
- VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197–221. https://www.researchgate.net/publication/233237328 The Relative Effectiveness of Hum an_Tutoring_Intelligent_Tutoring_Systems_and_Other_Tutoring_Systems
- Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centred strategies for revolutionising e-learning. Morgan Kaufmann.

